Finding Useful Predictions by Meta-gradient Descent
to Improve Decision-making

Alex Kearney Anna Koop
Department of Computing Science Department of Computing Science
University of Alberta University of Alberta
Edmonton, AB, Canada Edmonton, AB, Canada
hi@alexkearney.com akoop@ualberta.ca

Johannes Giinther Patrick M. Pilarski

Department of Computing Science Department of Computing Science
University of Alberta

& Department of Medicine

Alberta Machine Intelligence Institute University of Alberta
Edmonton, AB, Canada Edmonton, AB, Canada

gunther@ualberta.ca pilarski@ualberta.ca
Abstract

In computational reinforcement learning, a growing body of work seeks to express
an agent’s model of the world through predictions about future sensations. In this
manuscript we focus on predictions expressed as General Value Functions: tem-
porally extended estimates of the accumulation of a future signal. One challenge
is determining from the infinitely many predictions that the agent could possibly
make which might support decision-making. In this work, we contribute a meta-
gradient descent method by which an agent can directly specify what predictions
it learns, independent of designer instruction. To that end, we introduce a partially
observable domain suited to this investigation. We then demonstrate that through
interaction with the environment an agent can independently select predictions
that resolve the partial-observability, resulting in performance similar to expertly
chosen value functions. By learning, rather than manually specifying these pre-
dictions, we enable the agent to identify useful predictions in a self-supervised
manner, taking a step towards truly autonomous systems.

1 Making Sense of The World Through Predictions

It is often useful to break a challenging problem into sub-problems: progress on sub-tasks can sup-
port an agent’s progress on a greater task, e.g., learning the values of states in order to approximate
the optimal policy, or learning models of the world to better plan. One way an agent can create sub-
problems and a world model is by learning predictions of its world—biological agents do this by
building predictive sensorimotor models of their world (Rao and Ballard, 1999; Wolpert et al., 1995;
Gilbert, 2009). One principled and well understood way of making temporally extended predictions
in reinforcement learning is by learning and maintaining value functions. Value functions predict the
long-term expected accumulation of a signal in a given state (Sutton, 1988), and can predict not only
reward, but any signal available to an agent via its senses (Sutton et al., 2011). Prior works have
used general value estimates as features to adapt the control interfaces of bionic limbs (Edwards
et al., 2016), design reflexive control systems for robots (Modayil and Sutton, 2014) and living cats

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

(Dalrymple et al., 2020), and to inform industrial welding about the process quality (Giinther et al.,
2016).

An open challenge when using GVFs is determining what to predict. Of all the possible predictions
to make, which subset is most useful to inform and support decision making? This choice is typically
made by the human designer of the system. However, previous work has used generate and test to
choose which predictions are maintained, and which should be replaced (Schlegel et al., 2018). One
hindrance of this method is the generator used to pick new predictions: the agent must explore a
space of infinite predictions if they are chosen randomly. Moreover, common evaluation methods
are not always reliable and can have adverse impacts on performance (Kearney et al., 2021). Recent
work has explored meta-gradient descent as a means of learning meta-parameters that specify the
predictions (Veeriah et al., 2019); however, in this case the estimates were used as auxiliary tasks—
the estimates themselves were not directly used in decision-making.

In this manuscript we propose a method of using meta-gradient descent to discover GVFs inde-
pendent of human instruction and supervision. We do so by constructing a loss that shapes what the
underlying predictions are about based on the control agent’s learning process. All learning methods
are updated incrementally and online. These value estimates can then be used directly as features by
a control learner to solve a partially-observable problem.

2 Learning What to Predict: An Architectural Proposal

Our agent is structured in three parts (Figure 1): 1) a control learner that chooses each action; 2) a
collection of GVFs that approximate value-functions specified by some policies 7;...,,, cumulants c,
and discount functions 7;...,,; and 3) meta-weights that determine the policy 7 (w,) and cumulant ¢
(w.) each GVF is conditioned on. This architecture is shown in Figure 1; pseudocode describes the
relationships between these components in Algorithm 1.

On each time-step, the agent observes the current state of the environment o;. A collection of n
GVFs perform a temporal difference update based on this observation, and prediction estimates are
produced v...,,. These predictions v;...,, are given to the control agent as input features with which
an action a;1 is chosen according to 7eonior. After taking an action, the agent observes a resulting
reward R, and a following observation o, and the cycle repeats.

Three parameters—the discount v, policy 7 and the cumulant ¢ determine what aspect of the en-
vironment each prediction is about. The cumulant determines the signal of interest from the en-
vironment, and the policy defines what the agent is doing during the prediction. We define meta-
weights w, and w, that determine the cumulant and policy a prediction is conditioned on. These
meta-parameters are incrementally learned alongside the GVF they specify, affecting the GVF by
determining how the values should change by modifying w,, during each temporal difference up-
date.

Agent
R (o a

control

‘ R control

Weontrol

(a) A depiction of the agent-environment relationship showing (b) A depiction of the indirect re-
how the agent processes information from the environment, and lationship between the error and
chooses an action. the underlying weights.

Figure 1: Relationship between the sub-components of the agent and its environment. Denoted in
green is the environments feedback in the form of reward/TD error.

Algorithm 1 A meta-gradient approach to self-supervise prediction selection to inform control.

INITALISE: set control agent weights weonwol, GVF weights wgyf ;...n,, and meta weights we ;,
Wr ;. Choose activations @cymulant and Ppoticy. Choose step-size o for the control agent, GVFs, and
meta-parameters independently. Set an L2 \. Set an € e-greedy for action-selection.
START: Make initial observation oy, take initial action ag. The gvf-state,, is 09, ao.
Produce GVF estimates Vj; these estimates form control-stateg.

for t=1, to final time-step T:
With probability € select a random action a;.
Else select action a; = argmaz,Q(d(vi), at).
Observe o,y and 744 resulting from action a;.
Perform meta-gradient descent
Take gradient steps on £ with respect to both wpolicy and Weumulant-
Update GVFs
Output current cumulant ¢ = Geumutant (0¢, Weumulant)-
Output current policy Tyt = Ppoticy (0¢, Wpolicy)-
Approximate state for GVFs: gvf-state = oy, ay, v;.
Update each GVF’s parameters wg,s given their computed 7, ¢, and fixed .
Update control policy
Output current estimate for each GVF given vy (gvf-state,, wgvf).
Approximate state for control learner: control-state; ;1 = v;11.
Update control agent’s Q values given control-state;, a, 741,
And control-state;; ;.

end
Seasonal Changes Average error over last 1000 time-steps
(Greedy behaviour)

1.0
0.9 U-‘J-h-I.I-L
0.8

507

£0.6| | {

2 J
0.5
s I |
0.31 L o enment obs only
0 2 —— meta-learned GVFs

900 920 940 960 980 1000

Time-steps

(a) There are four states: two monsoon and (b) Three different learners that use 1) the environmental observa-
two drought (inner circles). The outer ar- tions as inputs (blue), 2) two additional predictions that are known
rows indicate how the seasons change as the to express the seasons (in orange), 3) two additional predictions
agent transitions through the cycle. that are updated using meta-gradient descent (in black).

Figure 2: Monsoon World and comparison of learned policies. Each independent agent in 2b is
averaged over 30 independent trials. Error bars are standard error.

There is an indirect relationship between the updates to the meta-weights, and the agent’s TD er-
ror deonrol; through this relationship we can express a gradient that describes how the underlying
weights w,,; and w, which shape the meaning of a particular GVF influence the agent’s Tempo-
Odcontrol. OWeontrol awgvf

OWeontrol OWgyf OWn
function £ (Weontrol, Wr) = 5020mrol for the policy and the cumulant. Using meta-gradient descent,
the underlying parameters w. and w, that output the cumulant ¢ and policy 7 that a given agent
is following perform meta-gradient descent can be updated as so:w, ¢ wr — @V, Lr and

We — We — AV, Le.

ral Difference error: B‘L“’“""‘ = . By this relationship, we can construct a loss

3 Monsoon World: A Partially Observable Environment

We evaluate meta-gradient discovery of GVFs using a partially observable control problem, Mon-
soon World (Figure 2a). In Monsoon World, there are two seasons: monsoon and drought. The

agent tends to a field by choosing to either water, or not water their farm. Watering the field during
a drought will result in a reward of 1; watering the field during monsoon season does not produce
growth and results in a reward of 0, and vice versa during a monsoon. If the agent chooses the right
action corresponding to the underlying season, a reward of 1 can be obtained on each time-step.
Regardless of the action chosen by the agent, time progresses.

In this environment the agent cannot observe the underlying season that determines the outcome of
their action. While the agent cannot directly observe seasons, it can observe something impacted by
the seasons—the result of a given action.

This monsoon problem can be solved, and an optimal policy found, if the agent reliably estimates
how long until watering produces a particular result. This can be done by learning echo GVFs
(Schlegel et al., 2021). Echo GVFs estimate the time to an event using a state-conditioned discount
and cumulant. In this case, estimating how long until there is growth o; ; = 1, or there is no growth
0;x = Owhenwatering: c=1 if o0;; = 1;else ¢ = 0. Similarly, a state-dependent discounting
function terminates the accumulation y(s¢, at, St+1), where v = 0 if ¢ = 1;else 0.9. These
estimates can be learnt off-policy using a deterministic policy (e.g., “if the agent waters” = = [0, 1]).

Having constructed the aforementioned GVFs, we are now able to express what is hidden from our
observation stream: how long until the next season. While no information was given about the
season, by relating what is sensed by the agent with the actions that were taken by the agent, we are
able to learn about the seasons indirectly.

4 Discovering GVFs in Monsoon World

We now answer the question: “Can an agent find useful predictions by performing meta-gradient
descent?” To do so, we compare three different agent configurations (Figure 2b): 1) a baseline agent
that only receives environmental observations as inputs, 2) an agent that in addition to the environ-
mental observations, receives the estimates of two GVFs with cumulants and policies known to be
effective in capturing the underlying seasons, and 3) an agent that has two additional predictions that
are learned through meta-gradient descent.

When GVFs are specified via meta-gradient descent, we initialise policies to an equiprobable
weighting of actions and cumulants to an equal weighting of observations. The policy weights are
passed through a Softmax activation function so that their sum is between 1 and 0, and the cumulants
are passed through a sigmoid activation to bound the cumulant between [0,1]. The meta-weights are
updated each time-step incrementally. We apply L2 to the loss with A = 0.001. Additional details
are in Appendix A.

As introduced in Section 3, observations alone are insufficient to determine the optimal action on
a given time-step. The policy learnt using only environment observations is roughly equivalent
to equiprobably choosing an action: the learned policy is no better than a coin-toss (Figure 2b,
depicted in blue). When expertly specified estimates are learned and provided as inputs in addition
to the environmental observations (orange). the learned policy is approximately optimal: using
predictions that estimate the time to each season optimal actions are taken most of the time. By
using meta-gradient descent, the agent was able to select its own predictive features without any
prior knowledge of the domain. Using Meta-gradient descent, the agent is able to solve the task
with performance on-par with the hand-crafted solution without being given what to predict.

5 Limitations & Future Work

We introduced a new approach to meta-learning predictions where GVFs outputs are used as features
by a control agent. We found that an agent with no prior knowledge of the environment was able
to select predictions that yielded performance equitable to agents using expertly chosen predictive
features. This success opens up several interesting questions for future work: 1) How well does
meta-gradient selection perform in domains with higher-dimensional observations and more actions?
2) How well would meta-gradient GVF selection perform in non-stationary domains? Finally, our
proposed approach is sensitive to the meta step-sizes that govern the incremental updates. How
optimisers or step-size adaptations could improve robustness has yet to be explored.

6 Conclusion

In this paper we demonstrated how predictions in the form of GVFs can be decided upon and learned
by meta-gradient descent alongside a policy for agent action selection. Doing so, we enable our
agent to learn about its environment in a self-supervised and independent way. We evaluate our
approach on a partially-observable MDP, called Monsoon world. Our results demonstrate that an
agent can independently specify GVFs that enable performance comparable to expertly chosen pre-
dictions that remove the partial-observability. This work therefore tackles one of the most important
problems in prediction-based self-supervised learning.

References

Dalrymple, A. N., Roszko, D. A., Sutton, R. S., and Mushahwar, V. K. (2020). Pavlovian control
of intraspinal microstimulation to produce over-ground walking. Journal of neural engineering,
17(3):036002.

Edwards, A. L., Dawson, M. R., Hebert, J. S., Sherstan, C., Sutton, R. S., Chan, K. M., and Pilarski,
P. M. (2016). Application of real-time machine learning to myoelectric prosthesis control: A case
series in adaptive switching. Prosthetics and orthotics international, 40(5):573-581.

Gilbert, D. (2009). Stumbling on happiness. Vintage Canada.

Giinther, J., Pilarski, P. M., Helfrich, G., Shen, H., and Diepold, K. (2016). Intelligent laser welding
through representation, prediction, and control learning: An architecture with deep neural net-
works and reinforcement learning. Mechatronics, 34:1-11. System-Integrated Intelligence: New
Challenges for Product and Production Engineering.

Kearney, A., Koop, A., and Pilarski, P. M. (2021). What’s a good prediction? Issues in evaluating
general value functions through error.

Modayil, J. and Sutton, R. S. (2014). Prediction driven behavior: Learning predictions that drive
fixed responses. In Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence.

Rao, R. P. and Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpre-
tation of some extra-classical receptive-field effects. Nature neuroscience, 2(1):79-87.

Schlegel, M., Jacobsen, A., Abbas, Z., Patterson, A., White, A., and White, M. (2021). General
value function networks. Journal of Artificial Intelligence Research, 70:497-543.

Schlegel, M., White, A., and White, M. (2018). A baseline of discovery for general value function
networks under partial observability. In NeurlPS Workshop on Reinforcement Learning under
Partial Observability): Montreal, Canada.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine learning,
3(1):9-44.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., and Precup, D. (2011).
Horde: A scalable real-time architecture for learning knowledge from unsupervised sensorimotor
interaction. In The 10th International Conference on Autonomous Agents and Multiagent Systems-
Volume 2, pages 761-768.

Veeriah, V., Hessel, M., Xu, Z., Lewis, R. L., Rajendran, J., Oh, J., van Hasselt, H., Silver, D., and
Singh, S. (2019). Discovery of useful questions as auxiliary tasks. CoRR, abs/1909.04607.

Wolpert, D. M., Ghahramani, Z., and Jordan, M. 1. (1995). An internal model for sensorimotor
integration. Science, 269(5232):1880-1882.

A Experiment Details

Experiments ran for a total of one million time-steps. Each agent had a training phase of 990,000
time-steps. The final 1000 time-steps the agent’s performance is evaluated: € is set to 0 and actions
are chosen greedily so that we can compare average reward given the learned policies.

A.1 Function Approximators

We use different function approximators to transform the given inputs to an agent-state s; =
¢(o¢,v¢). Echo GVFs are in log-space; before using them as inputs, we apply a transformation
to them as follows:

Algorithm 2 Log-transform of prediction estimates

Where v is are the value estimate from n GVFs.
transform(v) :

v « clip(log(v)/log(0.9),0,1)

return v

We use state aggregation to transform the estimates produced by each GVF into a binary feature
vector s; such that the value.

Algorithm 3 State aggregation of predictions

Where v is are the value estimate from 1 GVFs.
Where memsize is the allocated length for the binary feature vector.
state(v, memsize) :

s = zeros(memsize)

i < v[0] + v[1] x 10 # this assumes that each v; < 10

s[il=1

return s

The function approximation for each agent is as follows:

Environment Observations Only

1. Control Agent: state aggregation.
2. GVFs: state aggregation.

3. Meta-parameters: n/a.
Expert Chosen Predictions & Environment Observations

1. Control Agent: state aggregation.
2. GVFs: state aggregation.

3. Meta-parameters: n/a.
Meta-gradient Learned Predictions & Environment Observations

1. Control Agent: no function approximator; a linear combination of weights and inputs.
2. GVFs: state aggregation.

3. Meta-parameters: no function approximator; a linear combination of weights and inputs.

A.2 Parameter Settings

Parameters were chosen by performing a sweep across different values, choosing the best performing
combination for each agent.

Agent configuration

€ Qcontrol Qgufs O Q¢

Environment Obs Only 0.1 0.01 0.1 n/a | n/a
Expert Chosen Predictions 0.1 0.01 0.1 n/a | n/a
Meta-gradient Learned Predictions | 0.5 | 0.0001 0.1 0.001 | 0.1

Table 1: Parameter settings for different agent configurations

A.3 Meta-parameter Specification

The policy is a deterministic policy. The meta-weights determine the policy a GVF is conditioned

on, but they are not a function of the observations: 7 «— softmax (w;).

The cumulant c is a function of the observations such that sigmoid(w,_ 0;), where w,. are the meta-

weights for the cumulant, and o, is the present environment observation.

